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The statistical properties of coherent radiation scattered from phase-ordering materials are studied in detalil
using large-scale computer simulations and analytic arguments. Specifically, we consider a two-dimensional
model with a nonconserved, scalar order parametedel A), quenched through an order-disorder transition
into the two-phase regime. For such systems it is well established that the standard scaling hypothesis applies,
consequently, the average scattering intensity at wave vkaaod timer is proportional to a scaling function
which depends only on a rescaled times|k|?7. We find that the simulated intensities are exponentially
distributed, and the time-dependent average is well approximated using a scaling function due to Ohta, Jasnow,
and Kawasaki. Considering fluctuations around the average behavior, we find that the covariance of the
scattering intensity for a single wave vector at two different times is proportional to a scaling function with
natural variable$t=|t;—t,| and t =(t;+1,)/2. In the asymptotic largé- limit this scaling function depends
only onz= 6t/ t V2. For small values of, the scaling function is quadratic, corresponding to highly persistent
behavior of the intensity fluctuations. We empirically establish that the intensity covafifande# 0) equals
the square of the spatial Fourier transform of the two-time, two-point correlation function of the order param-
eter. This connection allows sensitive testing, either experimental or numerical, of existing theories for two-
time correlations in systems undergoing order-disorder phase transitions. Comparison between theoretical
scaling functions and our numerical results requires no adjustable paran®i63-651X97)05112-X

PACS numbes): 64.60.My, 64.60.Cn, 61.10.Dp, 05.44,

[. INTRODUCTION ing from an inhomogeneous material displays a characteristic
speckled scattering pattern. For instance, the random distri-
A scattering experiment, using neutrons or x rays, for exbution of phase-ordering domains shown in Fig. 1 and dis-
ample, is one of the most direct measures of the structure afussed below results in the speckle pattern shown in Fig. 2.
materials. Naively, this comes about because in the BorAs the domains change shape, the speckle pattern changes,
approximation, which usually applies for x rays and neu-and this time dependence of the speckle offers a unique
trons, the intensity in scattering measurements is propomethod for studying the evolution of inhomogeneous mate-
tional to the Fourier transform of a density-density correla-rials.
tion function. It is the wavelike properties of the scattering
probe which produces the Fourier transform. For a deeper
understanding of the relationship between scattering inten-
sity and structure one must realize that this direct correspon-
dence applies precisely only for coherent waves. Indeed, for
conventional sources, a given point in the incident wave is
only coherent within a small volume of neighboring points.
This coherence volume has transverse dimensions deter-
mined by how parallel the wave fronts are and a longitudinal
length determined by how monochromatic the wave is. In a
standard scattering experiment the different coherence re-
gions of the incident beam scatter independently. The inten-
sity measured thus depends on an incoherent average over
different regions of the scattering volume. By restricting the
scattering volume of the sample to less than the coherence
volume of the beam, one can eliminate this incoherent aver-
age, and thus learn more about the material’'s structure. Of
course, the experimental difficulty which arises is to obtain '
sufficient diffracted intensity to measure a signal. Recently,
it has been demonstrated that coherent diffraction experi- FIG. 1. A typical configuration of domains, taken from one of
ments can be performed with x rays using high-brilliancethe simulations reported here. Here all systems are x0®24, and
synchrotron sourcg4]. For coherent diffraction, the scatter- this picture is for the latest simulation times= 2000.
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~7". This scaling hypothesis has been found to apply to a
large range of systems, and to be unaffected by many of the
microscopic details of specific materials. That is, the scaling
function and the growth exponentare two features which
are common to a large number of systems, collectively called
a universality class. Universality classes for phase ordering
by domain growth are delineated chiefly by the presence or
absence of conservation laws. Indeed, many aspects of this
nonequilibrium process can be described by relatively simple
theoretical models. For example, for systems described by a
nonconserved scalar order parameter, often called model A
[2], the growth exponent is found to be=1/2. Systems
included in this class are the Ising model with spin-flip dy-
namics, binary alloys undergoing an order-disorder transi-
tion, and some magnetic materials with uniaxial anisotropy.
Model B [2] refers to systems in which the scalar order pa-
rameter is conserved, and the only growth mechanism is dif-
fusion. Systems in this universality class have 1/3 and
include the conserved Ising model, as well as binary alloys
undergoing phase separation.

In the present paper we investigate the time-dependent
fluctuationsaround this scaling behavior, and we demon-
strate how to study these fluctuations experimentally through
analysis of the time-dependent scattering. An early theoreti-

FIG. 2. Example of the speckled scattering intensity; this patternCal study of such behavior is given in Rp4). The scattering

. S . - Intensity is related to the Fourier transform of the order pa-
corresponds to the domain structure shown in Fig. 1. The intensit ) o - -
is shown on a logarithmic scale with darker shades indicatinJametew’(r’T)' the scalar field describing the inhomogeneity

brighter speckles. This is a 28@00 section from the full 1024 of a specific sample of the scattering material, by

X 1024 pattern with thek=0 origin at the center of the figure. ~

Speckles do not shift irk space, but their intensities fluctuate L(k,7)=|p(k,7)|% (1.0

strongly around thek 7)-dependent average value. The rays are

present in individual patterns, but are not correlated between trialsyhere we ignore the proportionality constant for conve-

nience. The average dfk,7) over an ensemble of initial

Motivated by these advances in experimental techniquegonditions is the structure factor,

we have undertaken a theoretical study of intensity fluctua-

tions caused by scattering from a nonequilibrium system un- S(k, ) =(1(k,7)). (1.2

dergoing phase ordering by domain growth. When a disor-

dered homogeneous material is rapidly brought to a new sgfe e the ensemble average expresses the distinction be-

(.)f (_:ondmons, correspon_dlng to the coexistence of two €qUween coherent scattering, given byand incoherent scat-
librium phases, a spatial pattern of domains of the twi

Gering, given byS. Fluctuations around the average scatterin
phases developg®]. This change of conditions is often ac- g.9 S 9 9

lished b id hf high t ture 1 are the main topic of interest in this paper. The structure
compiished by a rapid quench from a high temperature 10 g, .1, can also be expressed as the Fourier transform of the
low one below a miscibility gap. The quench from a homo-

! . . correlation function ofy(r,7),
geneous state with local fluctuations creates a microstructure W(r.7)

of interconnecting, interlocking domains through the kinetics
of a first-order phase transition. As time goes on the domains

grow, so as to minimize the area of the domain walls that . . L .
separate the phases. Because of these relationships, the scattering intensity and

When the average domain sif{r) at time 7 is large structure factor have been important tools for studying the

compared to all other relevant lengths, except for the exterflynamics of materials far from equilibrium. If a system is
L of the system itself, the system looks invariant if all Isotropic, the.n its average scatpermg properties depend only
lengths are measured in units of that domain size. In this cadd the mag_nltude of the scatt_erlng wave vectkgk,z K. n

the structure of these many domains is said to “scale” with, AAS mentioned above, scaling by the domain size

R(7). Experimentally, the growing domain structure is often!MPlies that correlations are time independent when mea-
studied by means of the scattering inten§&); whose width ~ Sured in_units ofR. Specifically, for an isotropic system,

is proportional to the inverse dR(7). When the average C(r,7)=C(r/R(7)), whereC(r) is one form of the scaling
scattering intensity is scaled in units of this time-dependentunction. Fourier transformation gives the average scattering
length, one obtains the scattering function for late times irintensity in terms of another form of the scaling function,
the form of a time-independent scaling function. The timewhich depends only on scaledtime tec 7k,

dependence then enters only throuty), which can typi-

cally be described in terms of an exponentsuch thatR kIS(k, 7)=F4(t), (1.9

C(r,7)=((0,7)ih(r,7)). 1.3
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whered is the spatial dimension of the scattering material.

The specific form of~,(t) depends on the dynamic univer- ,¢ [} | - Elr(ov;lllg(az)
—— ST, ,T

sality class.

As discussed above, when the scattering invoa@ser-
ent radiation, I1(k,7) is directly measured without self-
averaging. The scattering from an inhomogeneous materis
displays a characteristic speckled scattering pattern mucl_
like the one in Fig. 2, which shows the squared norm of the%2
Fourier transform of the configuration in Fig. 1. The intensity
of each speckle in(k,7) is due to correlations in the inho-
mogeneous sample, ame-(1)=1—S gives the fluctuations
around the average scattering intensity.

For materials in equilibrium, deviations &faround the
structure factor are induced by thermal fluctuationgjinin ! ‘
fact, fluctuations in the speckle patterns from scattered lase ©° ;= 00 200 0 o 500
light have been used as the standard basis of photon correli. 1

tion experiments at wavelengths ranging from the ultraviolet . . o .
b ) ging FIG. 3. Time evolution of the scattering intensity at one wave

to the infrared 5,6]. With the advent of high-brilliance syn- ) .
. . . vector for one quench to zero temperature. The intensity has been
chrotron photon sources, experiments involving coherent X . ) :
h b ile. E le. B ian diffusi normalized by the time-dependent structure factor determined over
rays .ave lSCOI”r;le.zOSﬁI e. bor e):jamp e’. rgv¥nlan hl uTQ"OQII 100 simulations considered here. The dotted line is a synthetic
rates in gold colloids have been determined irom the tlme‘Brownian” function constructed to have an exponential single-

required for a change in an x-ray speckle pattefiBl. e probability density and an exponential two-time covariance
Speckle from coherent x rays has also been used t0 studyith a characteristic time corresponding to that of the simulated
equilibrium fluctuations in FgAl near an order-disorder ntensity. Compared to the “Brownian” function, the persistence of
transition[9], and in micellar block-copolymer systed0].  the scattering intensity is appardiis, 14.
X rays can probe materials on much smaller length scales
than is currently possible with lasers, and their greater pefyses a standard time-dependent Ginzburg-Landau equation
etration allows the study of optically opaque materials. ~ yjth a nonconserved order parameter. In Sec. Il the time-
In the present paper we present a theoretical study of fluGime covariance of individual speckle intensities is discussed,
tuations in the scattering intensity from a nonequilibriumsing analysis readily adaptable to experimental data. The
system undergoing phase ordering by domain growth. Fogquality between this covariance and the square of the two-
such systems the intensity fluctuates around a timefme structure factor of the nonequilibrium material is argued
dependent structure factp4,11,13. The time evolution of iy gec. Iv, and comparisons to specific two-time theories
the intensity at a specific wave vector for one particularfo|iow in Sec. V. There an analytic expression for the uni-
quench can be normalized by the average behavior. A typicalersal scaling form for the intensity covariance at late times

example of such a normalized time series, obtained from & ohtained. Finally, our results are summarized in Sec. VI.
simulation at zero temperature, is presented in Fig. 3. It is the

correlations of such time series, averaged over many indi-
vidual speckles and quenches, that can be used to study the

pattern formation process in phase-ordering materials. The dynamics of speckle ik space were simulated by

In Fig. 3 we also show a "Brownian” function which was generating successive scattering patterns from a real-space
constructed to have the same single-time probability densitgjyjation of the dynamics of phase ordering following a
and an exponential two-time covariance with the same chalyench through an order-disorder phase transition. The con-
acteristic time as the normalized nonequilibrium scatteringigyration of the real-space system is described by a noncon-
intensity. Qualitative differences are immediately evident inganed scalar order-parameter figitr, 7), and its dynamics

the two time series. The Brownian function fluctuatesyre governed by the following time-dependent Ginzburg-
quickly, with large amplitude variations, while the intensity | 5143y equation:

fluctuations produced by the phase-ordering system vary
slowly, with markedly less variation in amplitude on short

3 -

IIl. METHOD

L B V)

time scale§12]. This property of the nonequilibrium inten- -T +(r,7). (2.1

sity fluctuations is called persistengE3], and it indicates a aT oY(r,7)

qualitative difference between the two-time correlation func-

tions for the two processd¢44]. The first term on the right-hand side of this Langevin equa-

For the remainder of this paper, we specialize to model Alion corresponds to deterministic relaxation, with rate con-
as a simple model for systems undergoing phase orderingtantI’, towards a minimum value of the free-energy func-
following a quench through a second-order order-disordetional F[(r,7)]. Thermal noise, which we neglect, is
phase transition. Some preliminary numerical results frommodeled by the random variable whose intensity is pro-
simulations less extensive than the ones used here were prgertional toI' and temperature by virtue of a fluctuation-
sented in Ref[15]. dissipation theoreni2]. We neglect because the most im-

The outline of the rest of this paper is as follows. Sectionportant sources of noise here are the initial conditions, which
Il describes the details of our numerical approach, whichgive the random domain morphology. The main effect of
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thermal noise at low temperatures far below any criticaltions is the time-dependent structure fac&fk,t), as de-

point is only to thermally roughen the domain walls. scribed in Sec. I. To be consistent with the numerical
We employ the standard Ginzburg-Landau-Wilson freeintegration, the magnitude of the scattering wave vector,
energy|2], k(k), is defined using the operator relation
e 1= [ dr| = Sure o+ Suten e L $ gz
! 2 VAT g —k <k>w<k,f>=ﬁ2 e* V(). (26

c
+ §|V1,b(r,7')|2 . (2.2 Substituting the discrete version of the Laplacian from Eq.

(2.4), one obtains fod=2

For a>0, the local part of the integrand in E(.2) repre- 1 1
sents a bistable potential, and the parameters of the mOdekZ(k)=3—coskx—cosky— ~cogk,+ k) — scosgky—k,).
define an equilibrium field magnitudé,|= \a/u, a thermal 2 2

correlation lengthéy=+/2c/a, and a characteristic evolution 2.7

time 7'oz(h"’}r)fl- The model can be rescaled by choosing athis method has been used to calculate the magnitude of the
new field ¢r= /||, a new lengthr = J2r/&,, and a new wave vector for scaling structure factors and data binning.
time 7= 7/ 7o. Dropping the tilde from the rescaled quanti- Because of lattice effects we consider only those wave vec-
ties for convenience, we get the rescaled dynamical equatiotQrs with 0<k(k)=0.75.
In order to apply the scaling ansatz, one must know the
AY(r,7) characteristic length at time OftenR(7) is estimated from
ar the structure factor, however, we have found an analytic ex-
pression that works well. Indeed, one advantage of our nu-
which has no adjustable parameters. Since thermal fluctuamerical approach, as compared to Monte Carlo or cell-
tions are explicitly omitted in the simulation, the only ran- dynamical simulations, is that we can test theories without
domness comes from the high-temperature state the systamsing any free parameters. In particular, Ohta, Jasnow, and
is in before the quench. This was implemented by an initiaKawasaki 18] found that the time dependence of the domain
condition such thai/(r,0) consists of independent random size obeyedR(7)=4pq7, with py=(d—1)/d. Further-
numbers uniformly distributed between0.1. more, they found that the structure factor scaled, and they
The simulations were conducted on square lattices witlyjave an explicit form for the scaling functidf(t). In com-
periodic boundary conditions, lattice constant=1, and a  parison, the theory of Kawasaki, Yalabik, and Gun{d#]
system size of ,=L,=L=1024. The Laplacian in Eq2.3) gives the same form ofF(t), but the factorpy does not
was implemented using the eight-neighbor discretizatiorappear in their result fdr( 7). Our present simulations agree

(L+V2)y(r, ) — 3(r,7), (2.3

(16,17 with the amplitude given by Ohtet al, and so we choose a
scaled time given by
) 1 1
Vey= 2(Ar)2 > ¢NN+§E Ynn—6¢ ], (29 t(k, 7)=[kR(7)]?=4pg4k?r. (2.9
where ¢\ are the four nearest neighbors #f(along the [ll. TWO-TIME CORRELATION FUNCTIONS

lattice directiong, and ¢\ are its four next-nearest neigh-
bors (diagonally. A simple Euler integration scheme with
A7=0.05 was used to collect data up to a maximum rescale
time of 7=2000 for 100 separate sets of initial conditions. . ; . . ;
times 7, and 7, is, on average, described by the intensity
Usually, the order parameter takes the valadgy,| ev- .
; . .. covariance,
erywhere except at the domain walls, which are negligibly
thin compared to the domains themselves. After our rescal- coy(k, 7, 7,) = (1(k, 7)1 (K, 72)) — (1 (K, 7)}{1 (K, 7))
ing, domain walls have a soft nonzero width of approxi-
mately 2. To minimize the effect of this nonzero, though
small, width, we use a nonlinear mapping of the rescaledror random systems, the covariance is maximum in the
order parameter ta-1 before taking the Fourier transform. equal-time limit,7;= 75, and as the two measurement times
The transformed fields is defined by become widely separated, the values of the intensity become
stochastically independent and the covariance decays to zero.
R 1 , For this relaxational system, negative values are not ex-
Pk, 7)= —E sgri y(r,7)]e’k", (2.5 pected. The scaling ansatz extended to this situation allows
LT collapse of the covariance at differeit, ¢,,75) by

A quantity to which experiments give ready access is the
Huctuation in the speckle intensity as a function of time. The
relationship between an individual speckle at two different

where the fact that the Iattic_e spacing is unit)_/ in all_direc_tions k29Cov(k, 71, 75) = CoM(ty,t,), (3.2

has been used. The Brillouin zone in two dimensions is de-

fined by the discrete set of wave vectoky, ky=2mj/L  where Covfy,t,) is the scaling function for the covariance.
with je{0,£1,+2,...,+(L/2—-1),L/2}. The scattering in- The simulated scattering intensities were analyzed in the
tensity 1 (k, 7)=|(k,7)|? and its average over initial condi- following way. In Eq.(3.2), the ensemble average over ini-
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tial conditions is scaled to the universal form. To make esti- 1000
mates of Cow,t,) from the simulations, we changed the
order of the averaging and used the single-simulation aver-
agesM(t) and M,(t;,t5). M(t) is the scaled intensity,
k91 (k,7), averaged over all pairs ok(r) that map ontd,

800

andM,(t4,t,) is the scaled product of the intensities at two 600
different times k21 (k,;)1(k,7,), averaged over all triples

(k,71,75) that map ontof,t,). Due to the large amount of -
data involved in the present study, samples Fbg(t,), 400

M;(t,), and M,(t;,t,) were accumulated in a two-
dimensional structure of bins organized by a pair of variables I
related to ,,t,) as described below. After accumulation 200
into the bins {;,t,), averaging over independent runs, i.e., I
over different initial conditions, was performed to further
improve our statistics. These averages were then used to find oo soo s00 1000
the scaling function Cov(,t,). It should be noted that all t,

the quantities used here are also readily obtained experimen- o ) _
tally, except for two unknown proportionality constants that FIQ. 4. Contour plot of the sc'aled two-nr_ne |n_ten5|ty correlation
depend on details of the experimental system. One occurs finction Corrtyt;). The correlation at, =t, is unity by construc-

the equation for the scaled time, correspondingyig i Eq. tion. The contours moving away from this diagonal are at 07 0.2,
(2.8). The other is the proportionality constant between the®-07+ @nd 0.02. The figure shows that the speckle intensity stays
measured scattering intensity and the squared norm of tHerelated for larger values aft=|t;—ty| as t =(t;+tp)/2 in-
Fourier transform of the order parameter, which we havé'®ases.

ignored in Eq.(1.2). Neither of these should be a barrier to

comparing our results to experiments. ot measures the distanéi@ units of scaled timeaway from
The normalized analog of the covariance is the correlatiodhe diagonal. The symmetry under exchange,céndt, is
function[20], retained. These variables were used for the binning of simu-
lation results that produced Fig. 4, with data grouped into
Corr(k,7y,75) 250 equally wide series for€ t <1000; eacht series hav-

ing 100 equal-width bins with€ 6t<2t.

- {1k 7)1k, m2)) = (L (K, ) NE (K, 72)) _ gThe chqaracteristic time differencét. required for the

V2K, 7)) = (1K, 7)) Y2 V(12(K, 7)) — (1 (K, 75) )? scaled intensity covariance Cdy(t,) to decay to half its

(3.3  maximum value can be found as a functiontof[The nor-

malized correlation function Cortr{,t,) doesnot decay to

Corr(k,7,7) is unity by construction, which removes the 1/2 for small values oft .] Here, results foM,; andM, for

equal-time variations in the covariance ashanges. Using 7= (in ten series, with 25 bins within each seliegre
the definitions oM, andM, above, the scaled version can ¢ ected in addition to those previously mentioned. The

be expressed as — . . .
P value of 6t for eacht was determined by linear interpola-

Corr(ty,t,) tion, and the dependence 6f, on t is presented in log-log
form in Fig. 5. In this figure, two asymptotic limits giving

N (Ma(ty,t2)) = (M1 (t) }M4(t2)) different algebraic relationships are obvious. For small val-

B \/<M2(t1,t1)—(Ml(tl))z)(Mz(tz,tz)—(Ml(tz))z)' ues of t the relationship is linear, with the exponent deter-

mined by least squares being 1:00.01 fort <1. At large

values oft , a least-squares fit far > 200 gives an exponent
where(- - -) denotes averaging over initial conditions as be-of 0.49+0.02. The estimates of error here are from obtaining
fore. The contour plot of Corr in thet{,t;) plane, Fig. 4, the exponents from different ranges bfin the simulation
shows how the correlations in individual speckle intensitiesdata; statistical error is an order of magnitude smaller than
decay. In this figure, the line Cotk(,t;)=1 extends along these estimates. The exponents we obtain are in good accord
the diagonal. Moving away from that line, contours at valueswith theories discussed in Sec. V below, which give them to
of 0.7, 0.2, 0.07, and 0.02 are shown. The scatter in the datee 1 and 1/2, respectively. However, the connection to
is apparent for the last contour and becomes dominant fatheory requires some further justification, given in the fol-
values of the correlation less than that. The striking featurgowing section.

of this figure is that the correlations increase in a nontrivial
way as the phase ordering continues. Thus normalization by
the time-dependent intensity is not sufficient to convert the IV. CORRELATIONS IN THE SCATTERING MATERIAL
speckle intensity to a stationary time series. While experiments can measure time correlations readily
A more natural set of variables for studying this effect isthrough the covariance or the correlation of intensities, Cov
t =(t,+1,)/2 anddt=|t,—1t,|. A constant value oft cor- or Corr, theories to date have made use of the two-point,
responds to a line perpendicular to the-t, diagonal, while  two-time order-parameter correlation functi&@xr,r,,)

(3.9
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low, we test it numerically and find these correlations to be
negligible for the two-point quantities of interest in this

oc“/ work.

W If y(k) is Gaussian, it is straightforward to relate the
7 intensity covariance Cquo the order-parameter correlation

/ 3 function C. Wick’s theorem can be used to decompose the
intensity-intensity average as

(I(k, 7)1 (k, 7))

G
7 OO0 ~0—0 =0 0-0 0~ — = -0~ O

o Simulation

o tieeke ’ =gk, m) 9% (K, 7)) (K, 72) P (K, 7)) (4.2)
——-1.325¢1
— Zteet = (K, 1) P (K, ) W (K, 70) I (K, 72))
3 | | | | | (4.2)
107 10° 10 10° 10° 10* 10°

‘ (PR, ) 7 (K, ) WP (K, 71) (K, 7))

FIG. 5. The characteristic decay time differenfte as a func-

tion of t=(t;+t,)/2. Power-law behavior is seen at small and + Pk, ) (K, 7o) WG* (K, 1) P (K, 7))
large values oft . Least-squares fits to the simulation data yield a

linear relationship at small and st.~ t * with a~1/2 at larget . = (1+ 8 0)S?(K, 71, 72) + S(k, 7)) S(K, 75).
The heavy solid line is the analytic prediction of the Yeung-Jasnow (4.3

theory. The broken line is its smatl-limit ot.~1.325t, and the HereS(k,,,7,) is the two-time structure factor correspond-

light solid line is the largetapproximationdt,~2.156\1. The t_ ing to the two-point, two-time order-parameter correlation
associated with the change in behavior agrees well with(E§b). function

The results of the Liu-Mazenko theory are represented as circles
connected by a dot-dashed line; least-squares fits show them to be

- K,71,72) = (K, ) J* (K, 4.4
nearly linear at both small and large Skory,m2) = (ko) 97 (K, 72)) 4.4
=((0,71) (r,7,)). In this section we argue for, and em- :j dre'*"C(r,my,7y).
pirically demonstrate, equality between the intensity covari- 4
ance fork # 0, which involves fourth moments of the order (4.5

parameter, and the square of the spatla_l Fourier Fran;form qjor k+0, Eq. (4.3 can be rewritten as

the two-time order-parameter correlation function in our

model. i Covi(k,71,72) =S*(K,71,72), (4.6)
The relationship is exact whegpi(k) is a joint Gaussian _ _ _ _ _

random number, with its real and imaginary parts indepenwhich equates the speckle intensity covariance with the

dent and Gaussian, as we will show below. However, estalsquare of the two-time structure factor of the system. Finally,

lishing z}(k) to be approximately Gaussian in the presentthe scaling ansatz defines a universal two-time form

case is not trivial. Gaussian variables are a natural conse-

—1d
quence of the central-limit theorem, which requires a large Falty t2) =k"S(k, 74, 72) 4.7
number of uncorrelated contributions to the variabiéth
some restrictions on the properties of the individual contri-
butions. For example, in a disordered system in equilibrium, Cou(ty,t,) =F2(ty,t,). (4.9
correlations exist only on the scale of a small lengttso a
system of edge length consists of on the order olL(£)* Our numerical tests show that this equality holds well in

independent, uncorrelated parts. Then the central-limit theahese simulations fok+0. In computer simulations, unlike
rem applies, ands(k) is a complex, Gaussian variable. For scattering experiments, the two-time structure factor can be
an ordered system in equilibrium, this argument applies tdound directly using Eq.(4.4). Generally, the product
the fluctuations around the ordered state. The present nofy(k, r,) ¢* (k,7,) is a complex number, but the mean value
equilibrium situation has some rough analogies to a disorof the imaginary part is zero, so the two-time structure factor
dered equilibrium state. At a given time, the average domaifs real valued. In our simulation data, the imaginary part of
size isR(7), and so the number of independent parts at ag(k, r,,7,) is found to be zero, within our accuracy. Results
given time is approximatelyL/R(7)1% which can be large. for the real part atr;=25 and r,=50 are presented on a

It therefore seems reasonable to expect the central-limit thegog-log scale in Fig. 6. The direct measurements of the two-
rem to apply, and indeed, we find empirically thatk) is  time structure factor and the square root of the intensity co-
Gaussian. However, unlike a disordered system, the distribusariance agree quite well, except at very large valuek, of
tion of domains of different sizes is broad in this case due tovhere lattice effects are important.

the initial long-wavelength instability and, furthermore, itis  Another consequence of our proposed decoupling, leading
clear that domains interact as they grow. The degree tto the relationship between Gpand S, can be tested by
which this correlation is important is a nontrivial issue; be-simulation. Whenr,= 75, Eq. (4.6) is simply
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FIG. 6. The two-time structure factor far, =25 and,=50. FIG. 8. The probability density of the normalized speckle inten-

The simulation results are found directly 8k, 7,,7,) (squares  sity, s=I(k,7)/S(k,7), for 7=100 (circles and r=2000 (tri-
and indirectly asyCov(k,7;,7,) (diamond$. The Liu-Mazenko angles. The solid line is the theoretical density of an exponentially
theory agrees semiquantitatively at smkll The Yeung-Jasnow distributed random variable. The deviation at lagyef the latest
theory agrees much better, even reproducing the second shouldéne result is due to finite-size effects.
qualitatively.
sions using the cell-dynamical method appear to be consis-
(12(k, 7)) = {1 (k,7))2=(1(k,T))?, (4.9  tentwith this resulf22]. We also note that the normalization
of the two-time intensity correlation function, E.3), can
and scaling can be applied to givé&(t)=Fy(t,t) be simplified using Eq4.9).
=/Cov(t,t). These are compared in Fig. 7, where the agree- Equation(4.9) is a property of exponentially distributed
ment is clearly quite good. As an aside, since the variancgariables, and to the extent thatk, 7) is a Gaussian random
does not depend on the system size, @9 demonstrates number,I (k,7) will be an exponentially distributed random
that I (k,7) is a spatially non-self-averaging quantit®1].  number. That is, the probability density for thermalized

Because of this, increasing the system dizavill not im- intensities,s(k, 7)=1(k, 7)/S(k, 7), should satisfy
prove the estimate db(k,r) given by a specific number of
speckles. However, this is compensated by the fact that more P(s)=exy—s) (4.10

independent speckles are available in a given randefof
each trial. Numerical results obtained by Shinozaki and

Oono in a study of spinodal decomposition in three dimen./ndependent ofK, 7). The probability density(s) is nor-
malized and has unit mean and standard deviation. Since

P(s) is identical for all values of K,7), only one density
function needs to be constructed. The results for all 0.024
<k(k)<0.75 are presented for two times in log-linear form
in Fig. 8. The histogram fos is constructed with a bin size
of 0.1, and the normalized intensity is found using the circu-
lar average of (k,7) from the same trial. The lower bound
onk is chosen such that at least 20 speckles contribute to this
circular average. This histogram is accumulated over all 100
trials and then normalized; for each histogram on the order
of 10° samples are available. The solid line is the expected
density,P(s) =exp(—9). For the earlier time the probability
density is exponential for af. At the latest simulation time
the density is exponential only fa<5, with a higher than
expected occurrence of speckles brighter than this. Still, less
10 TS than 0.5% of the points lie this far into the tail, and the
t deviation is inferred to be a finite-size effect because it be-

FIG. 7. Estimates of the scaling function for the structure factor®0Mes more prc_)nou.nced as our §|mu|at|0r1 Cont'nues' This
F.(t) obtained from the simulation data using the average scale@grées with earlier simulatioria5], in which increasing the
scattering intensity{M,(t)) (circles, and the square root of its System size eliminated the deviation. We believe this effect
variance,/Cov(t,t) (diamonds. The agreement between the two IS an artifact of the periodic boundary conditions which al-
measurements is a direct consequence of the intensity being 4AW stabilization of slablike domain patterf3], producing
exponentially distributed random variable. The forms obtained from ‘frozen-in” interference patterns that remain bright while
the Yeung-Jasnousolid line) and Mazenkddashed lingtheories ~ the average intensity steadily decreaseskNependence is
are also included. found for P(s).

© <M,(t)>
o (Covit )™
---- Mazenko
—— OJK

107
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V. TWO-TIME THEORIES

Two theoretical predictions for the two-point, two-time
order-parameter correlation function exist, which will be de-
scribed and then compared to our simulation results. The first

is an analytic theory, due to Yeung and Jasrj@d], which

is an extension of the analysis by Ohta, Jasnow, and Ka-
wasaki[18,25. The second theory, developed by Liu and
Mazenko[26], is numerical. Both theories produce approxi-
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Only as one or both of the scaled timgsandt, approaches
zero is the series well approximated by thweO term. The
asymptotic early-time form,

21di4
ot — t

1-| = td’zexp(—:),
2t 2

(5.59

_— 2
Fz,vi&,t)*;(zﬂm

mations for the two-point, two-time order-parameter correladis therefore a good approximation to E&.3) only in the
tion functionC(r,7,,7,) in the asymptotic limit. These then very restricted region,
give the structure factor through the general relation for the

Fourier transform of a spherically symmetric functigm) in
d dimensions,

f dre”“f(r)=(Zw)d’zk‘dj:duud’z‘]d,z,l(u)f(u/k),
(5.

whereJ, is a Bessel function of the first kind of order

(5.5b

2
St
oq—(% <62’d3ex;i<
2t

-2t
3d /’
near thet; andt, axes or the origin.
A more useful, analytical result is obtained in the limit of

large t and smallst. Then, the largest terms in the series
occur in a relatively wide range df near t/2(d+3). For

In the scaling regime, where the domain-wall thicknesdarge t, the exponential factors in Ed5.4) suppress the
can be ignored, the Yeung-Jasnow correlation function ismallj terms. The series can then be converted to an inte-

[24]

2R(m)R(7y) |V

R(71)?+R(72)?

2
Cyi(r,m,7)= ;arcsir{

. (5.2

_r2
XGX% R(71)2+R( 7'2)2)

With the previously defined variablest=|t;—t,| and t
=(t,+1t,)/2, this yields

_ 2 ©
Foviot t)= ;(ZW)MJ’O du u¥2 Jgp_s(u)
st | 2]94 P
Xarcsi 1—(% exp( —_) .
2t 2t

(5.3
Expansion of arcsin{) aboutx=0, followed by termwise
integration, gives

__ 2 _
Foviét t)= ;(Zﬂ)dlzt diz

(Zj)![l_(&/Zt_)Z]d(Zj+l)/4
0 22j(j!)2(2j+1)(d+2)/2

X
i=

. (5.9

t
X —
exp( 22j+1)
This infinite series is convergent for all physical valuesSbf
and t ; however, its terms are in general nonmonotonig.in

gral, and the factorials can be approximated by Stirling’s
formula to give

F2 YJ( &,t_)m ﬂ-(d—3)/24(d+1)/2t_—1/2JOcdwvv(d_l)/z

0
gz
1_ R
2t

The identity limy,_..(1—x/m)™=exp(—X) is used to obtain
the explicitly integrable form,

‘tdisw

X exp(—w). (5.9

Fovfz, t)~m(d-3124(d+ 112y = llZJ’deV‘/dfl)lz
| 0

zd
xXexp — 3_2\N+W

: (5.7)

wherez= &/\/?We note that the full Yeung-Jasnow result,
Eq.(5.3), as well as the early-time approximation, £5.53,

depends onst only through the scaling combinatiost/ t .
However, in the asymptotic late-time approximation, Eg.

(5.7), the natural scaling combination 'zs=5t/\/? As we
shall see below, this analytical result is in excellent agree-
ment with our numerical simulations. Equatigh.?) is

readily integrated to yield the explicit large-asymptotic
scaling function,

L o g\ (d+ D2
t 1/2F2,YJ(Z, t)~ 77_(da)/22(<1+3)/2( 7 §>

X K \/a
(d+1)/2| Z FIE

whereK,, is a modified Bessel function of the second kind.
The right-hand side of this equation depends onlyzoin
this larget limit, the asymptotic forms of this scaling func-
tion with respect ta are

(5.9
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d+1

(d=3)/2
g r 16d-1°

d—2)/25(d+2)/2 d e d e
ald=2i2p(d+2)12) 5 3 exp —z\/g for 1<z<2\/?.

4(‘”1)’2(1—i d 2) for z<1

TR, vz 1) = (5.9

The first line of this equation is exact far=0, where it gives  causes the tangent term in E§.11) to diverge. Use of the
the asymptotic Porod-tail limit of the Ohta-Jasnow-Kawasakitransformatione:Sin(wc_LM/z) leads to the small-time so-
result fort¥?F,(t). Note that, in the limitst=2t, the sec- lution

ond line gives a nonzero value, in contrast to the proper

result given in Eq.5.59. Whenz is on the order of\/T_, C. (0,)= Earcsi exd — 77 -
F, v, diverges from the smalt-approximation given in Eq. MR T 2u*(d—1) '
(5.9. (5.12

A nonrigorous scaling argumeiif8] suggests that the . o ) ) o
order-parameter correlation function should depend on wavé&his solution is only needed to avoid numerical difficulties at
vector and time through|R( ) — R(Tz)|°<5t/?lfn), when x=0 for the first time increment. Aside from this, E&.11)

T Th i iable obtained ab ) _ can be solved numerically using a finite differencing scheme
dt<t. The scaling variable obtained above is consistent 4 5 implicit with respect to the derivatives, but evaluates
with this since n=1/2 for model A. In fact, thez

— ' : : ' "< the tangent term explicitly. Usinghx=0.01u* and A7’
=6t/t("" result is obtained in the asymptotic larde- =105 we have reproduced Fig. 1 of RéR6]. In addition,

I|m|t |.f one repeats the above calculation for ger_lerabon—. the exponent for the autocorrelati@),(0,7') (which will
sidering the Yeung-Jasnow form for the correlation functlon,be discussed lateiis recovered. The Liu-Mazenko results

Er?{aﬁz)1 simply as an integrable approximation valid for can be compared to the theory presented here by taﬁtug

The second theory for two-time correlations in model A isbe @ parameter and noting théit=2 t tanh(2”). The two-
due to Liu and Mazenk§26]. It is an extension of a theory time structure factor predicted by the Liu-Mazenko theory,
developed by Mazenkf27] to predict the universal part of found using the Fourier transform in EG.1), is
the two-point, one-time scaled order-parameter correlation

function C(r/R(7)). The heart of the Liu-Mazenko theory is Fom(ot(t,r'),t)

the scaling ansatz 5T d+2)4
— =(2w)d’2( dx X2
C(r,71,7)=Cm(r/R(72),72/71) (5.10 pdl1+exp(—47")] 0
and the partial differential equation ( \/ 2t >_
X Jgz—1| X Cim(x,7),
) B B di2—1 S Ltexp—47)] (X, 7")
T=V§CLM(X, ')+ 2%-V,Cm(X,7) (5.13
r

1 —_ where the scaling functio€ y,(x,7’) itself depends oml.
+ —tar( —CLm(X,T’)). (5.19) The two-point, two-time order-parameter correlation
u* 2 functions predicted by the two theories can be compared di-
_ rectly with our simulation, without adjustable parameters.
In Eq. (5.11), C,y is considered a function of the rescaled Both theories describe the data well in some instances, and
variablesx=r/(2\7) and 4r'=In(r,/7). Note that these poorly in others. Our results are presented in Fig. 9pr
definitions are in terms of the physical quantities, but the=100 andr,=200. Data from our simulation are circularly
connections to the rescaled variables used in this work araveraged with bins of width one in the rescaled distance
straightforward. We have found numerical solutions in termsunits, then averaged over 80 trials. The agreement between
of Liu and Mazenko’s units, which we then converted so thathe Yeung-Jasnow theory and our simulation is quite good
all results shown here are in terms of the rescaling given irfor this choice of times, while the Liu-Mazenko result is only
Sec. Il. The Mazenko theory for one-time correlatiggg] qualitatively correct.
serves to provide input into the Liu-Mazenko model through  For larger separations in time, the Yeung-Jasnow theory
the scaled order-parameter correlation functi@y(x)  does not work as well, most noticeably in predicting the
—Cuw(x,7'=0) and the numerically obtained eigenvalue autocorrelation function,

o M : i X

m* . Since the system is assumed isotropic, Ggll) can be _

reduced to a single partial differential equation in terms of a A1, 72) =1, 7)1, 7)), (5.14

radial distancex and the logarithmic time ratie’. which is equivalent taC(r =0, 7, 7,). Fisher and Husf29]
The scaled order-parameter correlation function in thehave argued that for,> 7, the autocorrelation obeys the

Liu-Mazenko theory is normalized t€,(0,0)=1, which  power law
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FIG. 10. The autocorrelation functio®( 7, 7,). A least-squares

=100 andr,= 200 presented on a semi-log scale. The characterisfit for 7,>1800 for ther;=20 data gives the exponent-1.24.

tic lengthR(7,) is determined analytically as described in the text.

The agreement between the simulati@ircles and the Yeung-
Jasnow theorysolid line) is quite good for this choice of param-
eters; the Liu-Mazenko theorfglashed lingis noticeably different.

Fits for laterr; give progressively smaller values, but are still larger
than 1. The latest time value is approached from below, and the
asymptotic value may not be obtained for the simulation times con-
sidered here. For two dimensions, the Liu-Mazenko valua @

The agreement between simulations and Yeung-Jasnow is not &und numerically to be approximately 1.2887, while a recent ex-

good for larger time separations.

A(7y,m9)~[R(m)/R(7) " (5.19

for late times.(Note that, sincdR« 7", the variables used in
this paper give IfR(m)/R(m)]=—2ntanh 8t/2t.) Fisher
and Huse give physical arguments fdf2<\<d. They
point out that\ =1 for thed=1 Glauber model and conjec-
ture that \=5/4 for the two-dimensional spin-flip Ising
model. In the limitm,> 7, the Yeung-Jasnow theory gives
A=d/2, as is easily seen by settimg=0 in Eq. (5.2). The
Liu-Mazenko theory yields\~1.2887 and 1.6726 for two
and three dimensions, respective[26]. Cell-dynamical
simulations performed by Liu and Mazenk@6] gave \
=1.246+0.02 ford=2. A recent experiment30] found A
=1.246+0.079 for a two-dimensional nematic liquid crystal

using video techniques. For our simulations we measured

A(7,,7,) for several values of;. The results are presented
on a log-log scale versus,/ 7, in Fig. 10.[In this measure-

periment gives 1.2460.079. The Yeung-Jasnow prediction is
unity. The local effective exponeiiy; estimated from a three-point
finite difference appear in the inset. They characterize the uncer-
tainty in our estimate ok, but show that the Yeung-Jasnow pre-
diction is violated.

Liu-Mazenko theory is in semiquantitative agreement with
our simulations at smak, but falls off much more rapidly at
largek. In addition the shoulder present both in our simula-
tion result and in the Yeung-Jasnow theory is absent in the
Liu-Mazenko result. The Yeung-Jasnow theory agrees much
better with our simulation, although it does not fall off as fast
at largek, and its overestimation around the shoulder is seen
consistently throughout our simulations.

The prediction for the characteristic scaled time separa-
tion ét.., defined in Sec. lll, for both theories is compared to
our simulation results in Fig. 5. All three agree thait,

Dyt for small t. Least-squares fits giv®,= 1.36+0.02
for our simulation, D,=1.325+0.002 and D;=1.633
+0.006 for Yeung-Jasnow, anB,=1.00+0.02 for Liu-

ment we did not employ the nonlinear transformationp;s,enko. At Iarget_ the &C:Ddﬁ/z behavior of the

—sgn(y). This accounts for the fact thaf( 7, 7) <1, but
does not otherwise seem to affect the reslltsthe figure,

Yeung-Jasnow approach results naturally from Ef8).
This equation can be solved numerically to fibd~2.156

the data appear to support a power-law decay at the lateghq p.~2 187 in two and three dimensions, respectively.

time, and the exponent found by fitting the 48 points
>1800 for ;=20 is A=~1.24, which is in good agreement

with the experiment and the simulations by Liu and Ma-

zenko. However, the local effective value of, Mg
= 2dInA/dIn( 7 /7), which is shown vsr,/7; in the inset in

Fig. 10, does not show a clear convergence to an asymptoti

limit, especially for larger values of;. Here\ o is obtained
as a three-point finite-difference estimate aroungdbut es-

Our simulation results giv®,=2.12+0.01. The value ofr
separating the two scaling behaviors corresponds quantita-
tively to the value for which the first term no longer domi-
nates the series expansion of the Yeung-Jasnow result, given
by the relation(5.5b. The agreement between the Yeung-
asnow theory and our simulation is quite remarkable. On

the other hand, fort not small the Liu-Mazenko theory

timates that smooth the data over wider intervals yield simiCrosses over to a region whesé, is independent ot and

larly irregular results. The estimates »fobtained from our

then into another linear region; neither of these relationships

present simulations are thus somewhat uncertain. Howevels seen in our simulations.

the Yeung-Jasnow prediction=1, is clearly violated.

The analytic expression for the universal form of the two-

The predictions of the two theories for the two-time struc-time structure factor deduced from the Yeung-Jasnow theory
ture factor are compared to our simulation data in Fig. 6. Thdor large t is given in Eq.(5.8). It is tested for several values



56 SPECKLE FROM PHASE-ORDERING SYSTEMS 6611

16 \ two-time structure factor due to Yeung and Jasnow, and Liu
o102 and Mazenko. Both theories describe the data well in some
2 0202 instances, and poorly in other cases. The Yeung-Jasnow
ol 4 Z%:igﬁ ] theory is very similar to our simulation results, so longsas
2 e is not too large. For,> 74, the Liu-Mazenko theory gives a
2 ﬁ;gg Etter estimate for the autocorrelation exponenEor large
z \ 2) *Eggg t, however, the Liu-Mazenko theory does not show the
8 ) (B2 K ) ] same scaling as our simulation results, where the Yeung-
- ) Jasnow theory compares quantitatively well.
%& Our numerical simulations indicate that a definitive ex-
4l N ] perimental treatment of time correlations during an order-
disorder transition is possible by intensity-correlation spec-
trometry of scattering speckle. Analysis of experimental
i R correlation data should be similar to the procedures dis-
10

cussed for the simulation data in Sec. Ill. For nonconserved
systems, the experimental scaling function should be well
FIG. 11. Plot of the intensity-covariance scaling function @pproximated by Eq5.53, for smallk, with one adjustable
TCov(st, 1) versusz=dt/ 1 for different values oft . The data Parameter for eac_h axis. V\/_ith a similar adjustabl_e parameter
collapse onto a single curve for a large ranget ofThe solid curve scheme, the scaling function should be described by Eq.

is the corresponding analytic scaling functionE2 ., (st t), pre (5.8 for data in the Porod tail.
mayd ot ), pre- i i i i
dicted from the Yeung-Jasnow result in E&.8). It agrees quite Finally, we expect that the equality between the intensity

. . . covariance and the squared two-time structure factor also
well with the simulation data. . : . .
occurs in other phase-ordering systems; in particular, we ex-
— . . . __pect that it occurs for conserved systems. That would allow
of t in Fig. 11, which shows good collapse of the simulationy,e " exnerimental study of, for example, time correlations in
data for t Cov(ét,t) in terms of the scaling variable  pinary alloys undergoing phase separation by spinodal de-
=8t/ t V2. The data also agree quite well with the Yeung-composition, which are representative of model B. Indeed,
Jasnow scaling functiont F2 ., for z<5. Indeed, the slow pre!iminary numerical work we have done indig:ates this. Ex-
quadratic decay of correlations near 0 is another signa- Periments on such systems would be of considerable value.
ture of persistence in the phase-ordering system. In contrast,
Brownian fluctuations give exponential decay frafh=0.
The agreement with the Yeung-Jasnow theory is remarkable ACKNOWLEDGMENTS
since the scaling of the simulation data uses an analytic ex-
pression for the characteristic length, and no adjustable Pa;
rameters are employed.
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