
PHYSICAL REVIEW E DECEMBER 1997VOLUME 56, NUMBER 6
Speckle from phase-ordering systems
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The statistical properties of coherent radiation scattered from phase-ordering materials are studied in detail
using large-scale computer simulations and analytic arguments. Specifically, we consider a two-dimensional
model with a nonconserved, scalar order parameter~model A!, quenched through an order-disorder transition
into the two-phase regime. For such systems it is well established that the standard scaling hypothesis applies,
consequently, the average scattering intensity at wave vectork and timet is proportional to a scaling function
which depends only on a rescaled time,t;uku2t. We find that the simulated intensities are exponentially
distributed, and the time-dependent average is well approximated using a scaling function due to Ohta, Jasnow,
and Kawasaki. Considering fluctuations around the average behavior, we find that the covariance of the
scattering intensity for a single wave vector at two different times is proportional to a scaling function with
natural variablesdt5ut12t2u and t̄ 5(t11t2)/2. In the asymptotic large-t̄ limit this scaling function depends
only onz5dt/ t̄ 1/2. For small values ofz, the scaling function is quadratic, corresponding to highly persistent
behavior of the intensity fluctuations. We empirically establish that the intensity covariance~for kÞ0) equals
the square of the spatial Fourier transform of the two-time, two-point correlation function of the order param-
eter. This connection allows sensitive testing, either experimental or numerical, of existing theories for two-
time correlations in systems undergoing order-disorder phase transitions. Comparison between theoretical
scaling functions and our numerical results requires no adjustable parameters.@S1063-651X~97!05112-X#

PACS number~s!: 64.60.My, 64.60.Cn, 61.10.Dp, 05.40.1j,
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I. INTRODUCTION

A scattering experiment, using neutrons or x rays, for
ample, is one of the most direct measures of the structur
materials. Naively, this comes about because in the B
approximation, which usually applies for x rays and ne
trons, the intensity in scattering measurements is prop
tional to the Fourier transform of a density-density corre
tion function. It is the wavelike properties of the scatteri
probe which produces the Fourier transform. For a dee
understanding of the relationship between scattering in
sity and structure one must realize that this direct corresp
dence applies precisely only for coherent waves. Indeed
conventional sources, a given point in the incident wave
only coherent within a small volume of neighboring poin
This coherence volume has transverse dimensions d
mined by how parallel the wave fronts are and a longitudi
length determined by how monochromatic the wave is. I
standard scattering experiment the different coherence
gions of the incident beam scatter independently. The in
sity measured thus depends on an incoherent average
different regions of the scattering volume. By restricting t
scattering volume of the sample to less than the cohere
volume of the beam, one can eliminate this incoherent a
age, and thus learn more about the material’s structure
course, the experimental difficulty which arises is to obt
sufficient diffracted intensity to measure a signal. Recen
it has been demonstrated that coherent diffraction exp
ments can be performed with x rays using high-brillian
synchrotron sources@1#. For coherent diffraction, the scatte
561063-651X/97/56~6!/6601~12!/$10.00
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ing from an inhomogeneous material displays a character
speckled scattering pattern. For instance, the random di
bution of phase-ordering domains shown in Fig. 1 and d
cussed below results in the speckle pattern shown in Fig
As the domains change shape, the speckle pattern cha
and this time dependence of the speckle offers a uni
method for studying the evolution of inhomogeneous ma
rials.

FIG. 1. A typical configuration of domains, taken from one
the simulations reported here. Here all systems are 102431024, and
this picture is for the latest simulation time,t52000.
6601 © 1997 The American Physical Society



e
ua
un
o
s
u

w
-

to
o
tu
ic
in

ha

te
ll
a
ith
en

en
i
e

o a
the

ing

lled
ring

or
this
ple
y a

el A

y-
si-

py.
a-
dif-

ys

ent
-

ugh
eti-

a-
ity

e-
l

be-
-
ing
ure
f the

and
the
is
only

ea-
,

ring
n,

er
si

tin

.
te
re

ia
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Motivated by these advances in experimental techniqu
we have undertaken a theoretical study of intensity fluct
tions caused by scattering from a nonequilibrium system
dergoing phase ordering by domain growth. When a dis
dered homogeneous material is rapidly brought to a new
of conditions, corresponding to the coexistence of two eq
librium phases, a spatial pattern of domains of the t
phases develops@2#. This change of conditions is often ac
complished by a rapid quench from a high temperature
low one below a miscibility gap. The quench from a hom
geneous state with local fluctuations creates a microstruc
of interconnecting, interlocking domains through the kinet
of a first-order phase transition. As time goes on the doma
grow, so as to minimize the area of the domain walls t
separate the phases.

When the average domain sizeR(t) at time t is large
compared to all other relevant lengths, except for the ex
L of the system itself, the system looks invariant if a
lengths are measured in units of that domain size. In this c
the structure of these many domains is said to ‘‘scale’’ w
R(t). Experimentally, the growing domain structure is oft
studied by means of the scattering intensity@3#, whose width
is proportional to the inverse ofR(t). When the average
scattering intensity is scaled in units of this time-depend
length, one obtains the scattering function for late times
the form of a time-independent scaling function. The tim
dependence then enters only throughR(t), which can typi-
cally be described in terms of an exponentn, such thatR

FIG. 2. Example of the speckled scattering intensity; this patt
corresponds to the domain structure shown in Fig. 1. The inten
is shown on a logarithmic scale with darker shades indica
brighter speckles. This is a 2003200 section from the full 1024
31024 pattern with thek50 origin at the center of the figure
Speckles do not shift ink space, but their intensities fluctua
strongly around the (k,t)-dependent average value. The rays a
present in individual patterns, but are not correlated between tr
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;tn. This scaling hypothesis has been found to apply t
large range of systems, and to be unaffected by many of
microscopic details of specific materials. That is, the scal
function and the growth exponentn are two features which
are common to a large number of systems, collectively ca
a universality class. Universality classes for phase orde
by domain growth are delineated chiefly by the presence
absence of conservation laws. Indeed, many aspects of
nonequilibrium process can be described by relatively sim
theoretical models. For example, for systems described b
nonconserved scalar order parameter, often called mod
@2#, the growth exponent is found to ben51/2. Systems
included in this class are the Ising model with spin-flip d
namics, binary alloys undergoing an order-disorder tran
tion, and some magnetic materials with uniaxial anisotro
Model B @2# refers to systems in which the scalar order p
rameter is conserved, and the only growth mechanism is
fusion. Systems in this universality class haven51/3 and
include the conserved Ising model, as well as binary allo
undergoing phase separation.

In the present paper we investigate the time-depend
fluctuationsaround this scaling behavior, and we demon
strate how to study these fluctuations experimentally thro
analysis of the time-dependent scattering. An early theor
cal study of such behavior is given in Ref.@4#. The scattering
intensity is related to the Fourier transform of the order p
rameterc(r ,t), the scalar field describing the inhomogene
of a specific sample of the scattering material, by

I ~k,t!5uĉ~k,t!u2, ~1.1!

where we ignore the proportionality constant for conv
nience. The average ofI (k,t) over an ensemble of initia
conditions is the structure factor,

S~k,t!5^I ~k,t!&. ~1.2!

Here, the ensemble average expresses the distinction
tween coherent scattering, given byI , and incoherent scat
tering, given byS. Fluctuations around the average scatter
are the main topic of interest in this paper. The struct
factor can also be expressed as the Fourier transform o
correlation function ofc(r ,t),

C~r ,t!5^c~0,t!c~r ,t!&. ~1.3!

Because of these relationships, the scattering intensity
structure factor have been important tools for studying
dynamics of materials far from equilibrium. If a system
isotropic, then its average scattering properties depend
on the magnitude of the scattering wave vector,uku5k.

As mentioned above, scaling by the domain sizeR;tn

implies that correlations are time independent when m
sured in units ofR. Specifically, for an isotropic system
C(r ,t)5C̄„r /R(t)…, whereC̄( r̄ ) is one form of the scaling
function. Fourier transformation gives the average scatte
intensity in terms of another form of the scaling functio
which depends only on ascaledtime t}tk1/n,

kdS~k,t!5F1~ t !, ~1.4!
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56 6603SPECKLE FROM PHASE-ORDERING SYSTEMS
whered is the spatial dimension of the scattering mater
The specific form ofF1(t) depends on the dynamic unive
sality class.

As discussed above, when the scattering involvescoher-
ent radiation, I (k,t) is directly measured without self
averaging. The scattering from an inhomogeneous mate
displays a characteristic speckled scattering pattern m
like the one in Fig. 2, which shows the squared norm of
Fourier transform of the configuration in Fig. 1. The intens
of each speckle inI (k,t) is due to correlations in the inho
mogeneous sample, andI 2^I &5I 2S gives the fluctuations
around the average scattering intensity.

For materials in equilibrium, deviations ofI around the
structure factor are induced by thermal fluctuations inc. In
fact, fluctuations in the speckle patterns from scattered la
light have been used as the standard basis of photon cor
tion experiments at wavelengths ranging from the ultravio
to the infrared@5,6#. With the advent of high-brilliance syn
chrotron photon sources, experiments involving coheren
rays have become possible. For example, Brownian diffus
rates in gold colloids have been determined from the ti
required for a change in an x-ray speckle pattern@7,8#.
Speckle from coherent x rays has also been used to s
equilibrium fluctuations in Fe3Al near an order-disorde
transition@9#, and in micellar block-copolymer systems@10#.
X rays can probe materials on much smaller length sc
than is currently possible with lasers, and their greater p
etration allows the study of optically opaque materials.

In the present paper we present a theoretical study of fl
tuations in the scattering intensity from a nonequilibriu
system undergoing phase ordering by domain growth.
such systems the intensity fluctuates around a tim
dependent structure factor@4,11,12#. The time evolution of
the intensity at a specific wave vector for one particu
quench can be normalized by the average behavior. A typ
example of such a normalized time series, obtained from
simulation at zero temperature, is presented in Fig. 3. It is
correlations of such time series, averaged over many i
vidual speckles and quenches, that can be used to stud
pattern formation process in phase-ordering materials.

In Fig. 3 we also show a ‘‘Brownian’’ function which wa
constructed to have the same single-time probability den
and an exponential two-time covariance with the same c
acteristic time as the normalized nonequilibrium scatter
intensity. Qualitative differences are immediately evident
the two time series. The Brownian function fluctuat
quickly, with large amplitude variations, while the intensi
fluctuations produced by the phase-ordering system v
slowly, with markedly less variation in amplitude on sho
time scales@12#. This property of the nonequilibrium inten
sity fluctuations is called persistence@13#, and it indicates a
qualitative difference between the two-time correlation fun
tions for the two processes@14#.

For the remainder of this paper, we specialize to mode
as a simple model for systems undergoing phase orde
following a quench through a second-order order-disor
phase transition. Some preliminary numerical results fr
simulations less extensive than the ones used here were
sented in Ref.@15#.

The outline of the rest of this paper is as follows. Sect
II describes the details of our numerical approach, wh
l.
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uses a standard time-dependent Ginzburg-Landau equ
with a nonconserved order parameter. In Sec. III the tim
time covariance of individual speckle intensities is discuss
using analysis readily adaptable to experimental data.
equality between this covariance and the square of the t
time structure factor of the nonequilibrium material is argu
in Sec. IV, and comparisons to specific two-time theor
follow in Sec. V. There an analytic expression for the u
versal scaling form for the intensity covariance at late tim
is obtained. Finally, our results are summarized in Sec. V

II. METHOD

The dynamics of speckle ink space were simulated b
generating successive scattering patterns from a real-s
simulation of the dynamics of phase ordering following
quench through an order-disorder phase transition. The c
figuration of the real-space system is described by a nonc
served scalar order-parameter fieldc(r ,t), and its dynamics
are governed by the following time-dependent Ginzbu
Landau equation:

]c~r ,t!

]t
52G

dF@c~r ,t!#

dc~r ,t!
1z~r ,t!. ~2.1!

The first term on the right-hand side of this Langevin equ
tion corresponds to deterministic relaxation, with rate co
stantG, towards a minimum value of the free-energy fun
tional F@c(r ,t)#. Thermal noise, which we neglect, i
modeled by the random variablez, whose intensity is pro-
portional to G and temperature by virtue of a fluctuation
dissipation theorem@2#. We neglectz because the most im
portant sources of noise here are the initial conditions, wh
give the random domain morphology. The main effect

FIG. 3. Time evolution of the scattering intensity at one wa
vector for one quench to zero temperature. The intensity has b
normalized by the time-dependent structure factor determined
all 100 simulations considered here. The dotted line is a synth
‘‘Brownian’’ function constructed to have an exponential singl
time probability density and an exponential two-time covarian
with a characteristic time corresponding to that of the simula
intensity. Compared to the ‘‘Brownian’’ function, the persistence
the scattering intensity is apparent@13,14#.
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6604 56BROWN, RIKVOLD, SUTTON, AND GRANT
thermal noise at low temperatures far below any criti
point is only to thermally roughen the domain walls.

We employ the standard Ginzburg-Landau-Wilson fr
energy@2#,

F@c~r ,t!#5E dr F2
a

2
c2~r ,t!1

u

4
c4~r ,t!

1
c

2
u“c~r ,t!u2G . ~2.2!

For a.0, the local part of the integrand in Eq.~2.2! repre-
sents a bistable potential, and the parameters of the m
define an equilibrium field magnitudeuc0u5Aa/u, a thermal
correlation lengthj05A2c/a, and a characteristic evolutio
time t05(aG)21. The model can be rescaled by choosing
new field c̃5c/uc0u, a new lengthr̃ 5A2r /j0, and a new
time t̃ 5t/t0. Dropping the tilde from the rescaled quan
ties for convenience, we get the rescaled dynamical equa

]c~r ,t!

]t
5~11¹2!c~r ,t!2c3~r ,t!, ~2.3!

which has no adjustable parameters. Since thermal fluc
tions are explicitly omitted in the simulation, the only ra
domness comes from the high-temperature state the sy
is in before the quench. This was implemented by an ini
condition such thatc(r ,0) consists of independent rando
numbers uniformly distributed between60.1.

The simulations were conducted on square lattices w
periodic boundary conditions, lattice constantDr 51, and a
system size ofLx5Ly5L51024. The Laplacian in Eq.~2.3!
was implemented using the eight-neighbor discretizat
@16,17#

¹2c5
1

2~Dr !2S ( cNN1
1

2( cNNN26c D , ~2.4!

where cNN are the four nearest neighbors ofc ~along the
lattice directions!, andcNNN are its four next-nearest neigh
bors ~diagonally!. A simple Euler integration scheme wit
Dt50.05 was used to collect data up to a maximum resca
time of t52000 for 100 separate sets of initial conditions

Usually, the order parameter takes the values6uc0u ev-
erywhere except at the domain walls, which are negligi
thin compared to the domains themselves. After our res
ing, domain walls have a soft nonzero width of appro
mately A2. To minimize the effect of this nonzero, thoug
small, width, we use a nonlinear mapping of the resca
order parameter to61 before taking the Fourier transform
The transformed fieldĉ is defined by

ĉ~k,t!5
1

ALd(r
sgn@c~r ,t!#eik–r, ~2.5!

where the fact that the lattice spacing is unity in all directio
has been used. The Brillouin zone in two dimensions is
fined by the discrete set of wave vectors,kx , ky52p j /L
with j P$0,61,62, . . . ,6(L/221),L/2%. The scattering in-
tensity I (k,t)5uĉ(k,t)u2 and its average over initial cond
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tions is the time-dependent structure factorS(k,t), as de-
scribed in Sec. I. To be consistent with the numeri
integration, the magnitude of the scattering wave vec
k(k), is defined using the operator relation

2k2~k!ĉ~k,t!5
1

ALd(r
eik–r¹2c~r ,t!. ~2.6!

Substituting the discrete version of the Laplacian from E
~2.4!, one obtains ford52

k2~k!532coskx2cosky2
1

2
cos~kx1ky!2

1

2
cos~kx2ky!.

~2.7!

This method has been used to calculate the magnitude o
wave vector for scaling structure factors and data binni
Because of lattice effects we consider only those wave v
tors with 0,k(k)<0.75.

In order to apply the scaling ansatz, one must know
characteristic length at timet. OftenR(t) is estimated from
the structure factor, however, we have found an analytic
pression that works well. Indeed, one advantage of our
merical approach, as compared to Monte Carlo or c
dynamical simulations, is that we can test theories with
using any free parameters. In particular, Ohta, Jasnow,
Kawasaki@18# found that the time dependence of the doma
size obeyedR(t)5A4rdt, with rd5(d21)/d. Further-
more, they found that the structure factor scaled, and t
gave an explicit form for the scaling functionF1(t). In com-
parison, the theory of Kawasaki, Yalabik, and Gunton@19#
gives the same form ofF1(t), but the factorrd does not
appear in their result forR(t). Our present simulations agre
with the amplitude given by Ohtaet al., and so we choose a
scaled timet given by

t~k,t!5@kR~t!#254rdk2t. ~2.8!

III. TWO-TIME CORRELATION FUNCTIONS

A quantity to which experiments give ready access is
fluctuation in the speckle intensity as a function of time. T
relationship between an individual speckle at two differe
times t1 and t2 is, on average, described by the intens
covariance,

Covk~k,t1 ,t2!5^I ~k,t1!I ~k,t2!&2^I ~k,t1!&^I ~k,t2!&.
~3.1!

For random systems, the covariance is maximum in
equal-time limit,t15t2, and as the two measurement tim
become widely separated, the values of the intensity bec
stochastically independent and the covariance decays to z
For this relaxational system, negative values are not
pected. The scaling ansatz extended to this situation all
collapse of the covariance at different (k,t1 ,t2) by

k2dCovk~k,t1 ,t2!5Cov~ t1 ,t2!, ~3.2!

where Cov(t1 ,t2) is the scaling function for the covariance
The simulated scattering intensities were analyzed in

following way. In Eq.~3.2!, the ensemble average over in
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56 6605SPECKLE FROM PHASE-ORDERING SYSTEMS
tial conditions is scaled to the universal form. To make e
mates of Cov(t1 ,t2) from the simulations, we changed th
order of the averaging and used the single-simulation a
agesM1(t) and M2(t1 ,t2). M1(t) is the scaled intensity
kdI (k,t), averaged over all pairs of (k,t) that map ontot,
andM2(t1 ,t2) is the scaled product of the intensities at tw
different times,k2dI (k,t1)I (k,t2), averaged over all triples
(k,t1 ,t2) that map onto (t1 ,t2). Due to the large amount o
data involved in the present study, samples forM1(t1),
M1(t2), and M2(t1 ,t2) were accumulated in a two
dimensional structure of bins organized by a pair of variab
related to (t1 ,t2) as described below. After accumulatio
into the bins (t1 ,t2), averaging over independent runs, i.
over different initial conditions, was performed to furth
improve our statistics. These averages were then used to
the scaling function Cov(t1 ,t2). It should be noted that al
the quantities used here are also readily obtained experim
tally, except for two unknown proportionality constants th
depend on details of the experimental system. One occu
the equation for the scaled time, corresponding to 4rd in Eq.
~2.8!. The other is the proportionality constant between
measured scattering intensity and the squared norm of
Fourier transform of the order parameter, which we ha
ignored in Eq.~1.2!. Neither of these should be a barrier
comparing our results to experiments.

The normalized analog of the covariance is the correla
function @20#,

Corr~k,t1 ,t2!

5
^I ~k,t1!I ~k,t2!&2^I ~k,t1!&^I ~k,t2!&

A^I 2~k,t1!&2^I ~k,t1!&2A^I 2~k,t2!&2^I ~k,t2!&2
.

~3.3!

Corr(k,t,t) is unity by construction, which removes th
equal-time variations in the covariance ast changes. Using
the definitions ofM1 andM2 above, the scaled version ca
be expressed as

Corr~ t1 ,t2!

5
^M2~ t1 ,t2!&2^M1~ t1!&^M1~ t2!&

AŠM2~ t1 ,t1!2^M1~ t1!&2
‹ŠM2~ t2 ,t2!2^M1~ t2!&2

‹

,

~3.4!

where^•••& denotes averaging over initial conditions as b
fore. The contour plot of Corr in the (t1 ,t2) plane, Fig. 4,
shows how the correlations in individual speckle intensit
decay. In this figure, the line Corr(t1 ,t2)51 extends along
the diagonal. Moving away from that line, contours at valu
of 0.7, 0.2, 0.07, and 0.02 are shown. The scatter in the
is apparent for the last contour and becomes dominant
values of the correlation less than that. The striking feat
of this figure is that the correlations increase in a nontriv
way as the phase ordering continues. Thus normalization
the time-dependent intensity is not sufficient to convert
speckle intensity to a stationary time series.

A more natural set of variables for studying this effect
t̄ 5(t11t2)/2 anddt5ut22t1u. A constant value oft̄ cor-
responds to a line perpendicular to thet15t2 diagonal, while
i-

r-
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e

dt measures the distance~in units of scaled time! away from
the diagonal. The symmetry under exchange oft1 and t2 is
retained. These variables were used for the binning of sim
lation results that produced Fig. 4, with data grouped i
250 equally wide series for 0< t̄ <1000; eacht̄ series hav-
ing 100 equal-width bins with 0<dt<2 t̄ .

The characteristic time differencedtc required for the
scaled intensity covariance Cov(t1 ,t2) to decay to half its
maximum value can be found as a function oft̄ . @The nor-
malized correlation function Corr(t1 ,t2) doesnot decay to
1/2 for small values oft̄ .# Here, results forM1 andM2 for
0< t̄ <2 ~in ten series, with 25 bins within each series! were
collected in addition to those previously mentioned. T
value ofdtc for each t̄ was determined by linear interpola
tion, and the dependence ofdtc on t̄ is presented in log-log
form in Fig. 5. In this figure, two asymptotic limits giving
different algebraic relationships are obvious. For small v
ues of t̄ the relationship is linear, with the exponent dete
mined by least squares being 1.0060.01 for t̄ ,1. At large
values of t̄ , a least-squares fit fort̄ .200 gives an exponen
of 0.4960.02. The estimates of error here are from obtain
the exponents from different ranges oft̄ in the simulation
data; statistical error is an order of magnitude smaller th
these estimates. The exponents we obtain are in good ac
with theories discussed in Sec. V below, which give them
be 1 and 1/2, respectively. However, the connection
theory requires some further justification, given in the fo
lowing section.

IV. CORRELATIONS IN THE SCATTERING MATERIAL

While experiments can measure time correlations rea
through the covariance or the correlation of intensities, C
or Corr, theories to date have made use of the two-po
two-time order-parameter correlation functionC(r ,t1 ,t2)

FIG. 4. Contour plot of the scaled two-time intensity correlati
function Corr(t1 ,t2). The correlation att15t2 is unity by construc-
tion. The contours moving away from this diagonal are at 0.7, 0
0.07, and 0.02. The figure shows that the speckle intensity s

correlated for larger values ofdt5ut22t1u as t̄ 5(t11t2)/2 in-
creases.
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6606 56BROWN, RIKVOLD, SUTTON, AND GRANT
[^c(0,t1)c(r ,t2)&. In this section we argue for, and em
pirically demonstrate, equality between the intensity cova
ance forkÞ0, which involves fourth moments of the orde
parameter, and the square of the spatial Fourier transform
the two-time order-parameter correlation function in o
model.

The relationship is exact whenĉ(k) is a joint Gaussian
random number, with its real and imaginary parts indep
dent and Gaussian, as we will show below. However, es
lishing ĉ(k) to be approximately Gaussian in the prese
case is not trivial. Gaussian variables are a natural co
quence of the central-limit theorem, which requires a la
number of uncorrelated contributions to the variable~with
some restrictions on the properties of the individual con
butions!. For example, in a disordered system in equilibriu
correlations exist only on the scale of a small lengthj, so a
system of edge lengthL consists of on the order of (L/j)d

independent, uncorrelated parts. Then the central-limit th
rem applies, andĉ(k) is a complex, Gaussian variable. F
an ordered system in equilibrium, this argument applies
the fluctuations around the ordered state. The present
equilibrium situation has some rough analogies to a dis
dered equilibrium state. At a given time, the average dom
size is R(t), and so the number of independent parts a
given time is approximately@L/R(t)#d, which can be large
It therefore seems reasonable to expect the central-limit th
rem to apply, and indeed, we find empirically thatĉ(k) is
Gaussian. However, unlike a disordered system, the distr
tion of domains of different sizes is broad in this case due
the initial long-wavelength instability and, furthermore, it
clear that domains interact as they grow. The degree
which this correlation is important is a nontrivial issue; b

FIG. 5. The characteristic decay time differencedtc as a func-

tion of t̄ 5(t11t2)/2. Power-law behavior is seen at small a

large values oft̄ . Least-squares fits to the simulation data yield

linear relationship at smallt̄ anddtc; t̄ a with a'1/2 at large t̄ .
The heavy solid line is the analytic prediction of the Yeung-Jasn

theory. The broken line is its small-t̄ limit dtc'1.325t̄ , and the

light solid line is the large-t̄ approximationdtc'2.156A t̄ . The t̄
associated with the change in behavior agrees well with Eq.~5.5b!.
The results of the Liu-Mazenko theory are represented as cir
connected by a dot-dashed line; least-squares fits show them

nearly linear at both small and larget̄ .
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low, we test it numerically and find these correlations to
negligible for the two-point quantities of interest in th
work.

If ĉ(k) is Gaussian, it is straightforward to relate th
intensity covariance Covk to the order-parameter correlatio
function C. Wick’s theorem can be used to decompose
intensity-intensity average as

^I ~k,t1!I ~k,t2!&

5^ĉ~k,t1!ĉ* ~k,t1!ĉ~k,t2!ĉ* ~k,t2!& ~4.1!

5^ĉ~k,t1!ĉ* ~k,t1!&^ĉ~k,t2!ĉ* ~k,t2!&
~4.2!

1^ĉ~k,t1!ĉ* ~k,t2!&^ĉ* ~k,t1!ĉ~k,t2!&

1^ĉ~k,t1!ĉ~k,t2!&^ĉ* ~k,t1!ĉ* ~k,t2!&

5~11dk,0!S
2~k,t1 ,t2!1S~k,t1!S~k,t2!.

~4.3!

HereS(k,t1 ,t2) is the two-time structure factor correspon
ing to the two-point, two-time order-parameter correlati
function

S~k,t1 ,t2!5^ĉ~k,t1!ĉ* ~k,t2!& ~4.4!

5E dreik•rC~r ,t1 ,t2!.

~4.5!

For kÞ0, Eq. ~4.3! can be rewritten as

Covk~k,t1 ,t2!5S2~k,t1 ,t2!, ~4.6!

which equates the speckle intensity covariance with
square of the two-time structure factor of the system. Fina
the scaling ansatz defines a universal two-time form

F2~ t1 ,t2!5kdS~k,t1 ,t2! ~4.7!

and

Cov~ t1 ,t2!5F2
2~ t1 ,t2!. ~4.8!

Our numerical tests show that this equality holds well
these simulations forkÞ0. In computer simulations, unlike
scattering experiments, the two-time structure factor can
found directly using Eq.~4.4!. Generally, the produc
ĉ(k,t1)ĉ* (k,t2) is a complex number, but the mean valu
of the imaginary part is zero, so the two-time structure fac
is real valued. In our simulation data, the imaginary part
S(k,t1 ,t2) is found to be zero, within our accuracy. Resu
for the real part att1525 andt2550 are presented on
log-log scale in Fig. 6. The direct measurements of the tw
time structure factor and the square root of the intensity
variance agree quite well, except at very large values ok,
where lattice effects are important.

Another consequence of our proposed decoupling, lead
to the relationship between Covk and S, can be tested by
simulation. Whent15t2, Eq. ~4.6! is simply

w
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56 6607SPECKLE FROM PHASE-ORDERING SYSTEMS
^I 2~k,t!&2^I ~k,t!&25^I ~k,t!&2, ~4.9!

and scaling can be applied to giveF1(t)5F2(t,t)
5ACov(t,t). These are compared in Fig. 7, where the agr
ment is clearly quite good. As an aside, since the varia
does not depend on the system size, Eq.~4.9! demonstrates
that I (k,t) is a spatially non-self-averaging quantity@21#.
Because of this, increasing the system sizeL will not im-
prove the estimate ofS(k,t) given by a specific number o
speckles. However, this is compensated by the fact that m
independent speckles are available in a given range ofk for
each trial. Numerical results obtained by Shinozaki a
Oono in a study of spinodal decomposition in three dim

FIG. 6. The two-time structure factor fort1525 andt2550.
The simulation results are found directly asS(k,t1 ,t2) ~squares!,
and indirectly asACovk(k,t1 ,t2) ~diamonds!. The Liu-Mazenko
theory agrees semiquantitatively at smallk. The Yeung-Jasnow
theory agrees much better, even reproducing the second sho
qualitatively.

FIG. 7. Estimates of the scaling function for the structure fac
F1(t) obtained from the simulation data using the average sc
scattering intensity,̂ M1(t)& ~circles!, and the square root of its
variance,ACov(t,t) ~diamonds!. The agreement between the tw
measurements is a direct consequence of the intensity bein
exponentially distributed random variable. The forms obtained fr
the Yeung-Jasnow~solid line! and Mazenko~dashed line! theories
are also included.
-
e

re

d
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sions using the cell-dynamical method appear to be con
tent with this result@22#. We also note that the normalizatio
of the two-time intensity correlation function, Eq.~3.3!, can
be simplified using Eq.~4.9!.

Equation~4.9! is a property of exponentially distribute
variables, and to the extent thatĉ(k,t) is a Gaussian random
number,I (k,t) will be an exponentially distributed random
number. That is, the probability density for thenormalized
intensities,s(k,t)5I (k,t)/S(k,t), should satisfy

P~s!5exp~2s!, ~4.10!

independent of (k,t). The probability densityP(s) is nor-
malized and has unit mean and standard deviation. S
P(s) is identical for all values of (k,t), only one density
function needs to be constructed. The results for all 0.0
,k(k),0.75 are presented for two times in log-linear for
in Fig. 8. The histogram fors is constructed with a bin size
of 0.1, and the normalized intensity is found using the circ
lar average ofI (k,t) from the same trial. The lower boun
on k is chosen such that at least 20 speckles contribute to
circular average. This histogram is accumulated over all 1
trials and then normalized; for each histogram on the or
of 106 samples are available. The solid line is the expec
density,P(s)5exp(2s). For the earlier time the probability
density is exponential for alls. At the latest simulation time
the density is exponential only fors&5, with a higher than
expected occurrence of speckles brighter than this. Still,
than 0.5% of the points lie this far into the tail, and th
deviation is inferred to be a finite-size effect because it
comes more pronounced as our simulation continues. T
agrees with earlier simulations@15#, in which increasing the
system size eliminated the deviation. We believe this eff
is an artifact of the periodic boundary conditions which
low stabilization of slablike domain patterns@23#, producing
‘‘frozen-in’’ interference patterns that remain bright whi
the average intensity steadily decreases. Nok dependence is
found for P(s).

der

r
d

an

FIG. 8. The probability density of the normalized speckle inte
sity, s5I (k,t)/S(k,t), for t5100 ~circles! and t52000 ~tri-
angles!. The solid line is the theoretical density of an exponentia
distributed random variable. The deviation at larges of the latest
time result is due to finite-size effects.
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V. TWO-TIME THEORIES

Two theoretical predictions for the two-point, two-tim
order-parameter correlation function exist, which will be d
scribed and then compared to our simulation results. The
is an analytic theory, due to Yeung and Jasnow@24#, which
is an extension of the analysis by Ohta, Jasnow, and
wasaki @18,25#. The second theory, developed by Liu a
Mazenko@26#, is numerical. Both theories produce appro
mations for the two-point, two-time order-parameter corre
tion functionC(r ,t1 ,t2) in the asymptotic limit. These the
give the structure factor through the general relation for
Fourier transform of a spherically symmetric functionf (r ) in
d dimensions,

E dreik•r f ~r !5~2p!d/2k2dE
0

`

duud/2Jd/2 21~u! f ~u/k!,

~5.1!

whereJn is a Bessel function of the first kind of ordern.
In the scaling regime, where the domain-wall thickne

can be ignored, the Yeung-Jasnow correlation function
@24#

CYJ~r ,t1 ,t2!5
2

p
arcsinF S 2R~t1!R~t2!

R~t1!21R~t2!2D d/2

3expS 2r 2

R~t1!21R~t2!2D G . ~5.2!

With the previously defined variables,dt5ut12t2u and t̄
5(t11t2)/2, this yields

F2,YJ~dt, t̄ !5
2

p
~2p!d/2E

0

`

du ud/2 Jd/221~u!

3arcsinH F12S dt

2 t̄
D 2G d/4

expS 2u2

2 t̄
D J .

~5.3!

Expansion of arcsin(x) aboutx50, followed by termwise
integration, gives

F2,YJ~dt, t̄ !5
2

p
~2p!d/2 t̄ d/2

3(
j 50

`
~2 j !! @12~dt/2 t̄ !2#d~2 j 11!/4

22 j~ j ! !2~2 j 11!~d12!/2

3expS 2
t̄

2~2 j 11!
D . ~5.4!

This infinite series is convergent for all physical values ofdt

and t̄ ; however, its terms are in general nonmonotonic inj .
-
st

a-

-

e

s
is

Only as one or both of the scaled timest1 andt2 approaches
zero is the series well approximated by thej 50 term. The
asymptotic early-time form,

F2,YJ~dt, t̄ !'
2

p
~2p!d/2F12S dt

2 t̄
D 2G d/4

t̄ d/2expS 2
t̄

2
D ,

~5.5a!

is therefore a good approximation to Eq.~5.3! only in the
very restricted region,

0<12S dt

2 t̄
D 2

!62/d3expS 22 t̄

3d
D , ~5.5b!

near thet1 and t2 axes or the origin.
A more useful, analytical result is obtained in the limit

large t̄ and smalldt. Then, the largest terms in the seri
occur in a relatively wide range ofj near t̄ /2(d13). For
large t̄ , the exponential factors in Eq.~5.4! suppress the
small-j terms. The series can then be converted to an in
gral, and the factorials can be approximated by Stirlin
formula to give

F2,YJ~dt, t̄ !'p~d23!/24~d11!/2 t̄ 21/2E
0

`

dww~d21!/2

3F12S dt

2 t̄
D 2G t̄ d/8w

exp~2w!. ~5.6!

The identity limm→`(12x/m)m5exp(2x) is used to obtain
the explicitly integrable form,

F2,YJ~z, t̄ !'p~d23!/24~d11!/2 t̄ 21/2E
0

`

dww~d21!/2

3expF2S z2d

32w
1wD G , ~5.7!

wherez5dt/A t̄ . We note that the full Yeung-Jasnow resu
Eq. ~5.3!, as well as the early-time approximation, Eq.~5.5a!,
depends ondt only through the scaling combinationdt/ t̄ .
However, in the asymptotic late-time approximation, E

~5.7!, the natural scaling combination isz5dt/A t̄ . As we
shall see below, this analytical result is in excellent agr
ment with our numerical simulations. Equation~5.7! is
readily integrated to yield the explicit large-t̄ asymptotic
scaling function,

t̄ 1/2F2,YJ~z, t̄ !'p~d23!/22~d13!/2S zAd

8D ~d11!/2

3K ~d11!/2S zAd

8D , ~5.8!

whereKn is a modified Bessel function of the second kin
The right-hand side of this equation depends only onz. In
this large-t̄ limit, the asymptotic forms of this scaling func
tion with respect toz are
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t̄ 1/2F2,YJ~z, t̄ !5H p~d23!/2GS d11

2 D4~d11!/2S 12
1

16

d

d21
z2D for z!1

p~d22!/22~d12!/2S zAd

8D ~d/2!

expS 2zAd

8D for 1!z!2A t̄ .

~5.9!
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The first line of this equation is exact forz50, where it gives
the asymptotic Porod-tail limit of the Ohta-Jasnow-Kawas
result for t1/2F1(t). Note that, in the limitdt52 t̄ , the sec-
ond line gives a nonzero value, in contrast to the pro

result given in Eq.~5.5a!. When z is on the order ofA t̄ ,
F2,YJ diverges from the small-z approximation given in Eq.
~5.9!.

A nonrigorous scaling argument@28# suggests that the
order-parameter correlation function should depend on w
vector and time throughkuR(t1)2R(t2)u}dt/ t̄ (12n), when
dt! t̄ . The scaling variablez obtained above is consisten
with this since n51/2 for model A. In fact, the z

5dt/ t̄ (12n) result is obtained in the asymptotic large-t̄
limit if one repeats the above calculation for generaln, con-
sidering the Yeung-Jasnow form for the correlation functio
Eq. ~5.2!, simply as an integrable approximation valid f
small r .

The second theory for two-time correlations in model A
due to Liu and Mazenko@26#. It is an extension of a theory
developed by Mazenko@27# to predict the universal part o
the two-point, one-time scaled order-parameter correla
function C̄„r /R(t)…. The heart of the Liu-Mazenko theory i
the scaling ansatz

C~r ,t1 ,t2!5C̄LM„r /R~t2!,t2 /t1… ~5.10!

and the partial differential equation

]C̄LM~x,t8!

]t8
5¹x

2C̄LM~x,t8!12x•¹xC̄LM~x,t8!

1
1

m*
tanS p

2
C̄LM~x,t8! D . ~5.11!

In Eq. ~5.11!, C̄LM is considered a function of the rescale
variablesx5r /(2At) and 4t85 ln(t2 /t1). Note that these
definitions are in terms of the physical quantities, but
connections to the rescaled variables used in this work
straightforward. We have found numerical solutions in ter
of Liu and Mazenko’s units, which we then converted so t
all results shown here are in terms of the rescaling given
Sec. II. The Mazenko theory for one-time correlations@27#
serves to provide input into the Liu-Mazenko model throu
the scaled order-parameter correlation functionC̄M(x)
5C̄LM(x,t850! and the numerically obtained eigenvalu
m* . Since the system is assumed isotropic, Eq.~5.11! can be
reduced to a single partial differential equation in terms o
radial distancex and the logarithmic time ratiot8.

The scaled order-parameter correlation function in
Liu-Mazenko theory is normalized toC̄LM(0,0)51, which
i

r
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causes the tangent term in Eq.~5.11! to diverge. Use of the
transformationG5sin(pC̄LM/2) leads to the small-time so
lution

C̄LM~0,t8!5
2

p
arcsinFexpS 2

p

2m* ~d21!
t8D G .

~5.12!

This solution is only needed to avoid numerical difficulties
x50 for the first time increment. Aside from this, Eq.~5.11!
can be solved numerically using a finite differencing sche
that is implicit with respect to the derivatives, but evalua
the tangent term explicitly. UsingDx50.01m* and Dt8
51025 we have reproduced Fig. 1 of Ref.@26#. In addition,
the exponent for the autocorrelationC̄LM(0,t8) ~which will
be discussed later! is recovered. The Liu-Mazenko resul
can be compared to the theory presented here by takingt̄ to
be a parameter and noting thatdt52 t̄ tanh(2t8). The two-
time structure factor predicted by the Liu-Mazenko theo
found using the Fourier transform in Eq.~5.1!, is

F2,LM„dt~ t̄ ,t8!, t̄ …

5~2p!d/2S 2 t̄

rd@11exp~24t8!#
D ~d12!/4E

0

`

dx xd/2

3Jd/221S xA 2 t̄

rd@11exp~24t8!#
D C̄LM~x,t8!,

~5.13!

where the scaling functionC̄LM(x,t8) itself depends ond.
The two-point, two-time order-parameter correlatio

functions predicted by the two theories can be compared
rectly with our simulation, without adjustable paramete
Both theories describe the data well in some instances,
poorly in others. Our results are presented in Fig. 9 fort1
5100 andt25200. Data from our simulation are circularl
averaged with bins of width one in the rescaled distan
units, then averaged over 80 trials. The agreement betw
the Yeung-Jasnow theory and our simulation is quite go
for this choice of times, while the Liu-Mazenko result is on
qualitatively correct.

For larger separations in time, the Yeung-Jasnow the
does not work as well, most noticeably in predicting t
autocorrelation function,

A~t1 ,t2![^c~r ,t1!c~r ,t2!&, ~5.14!

which is equivalent toC(r50,t1 ,t2). Fisher and Huse@29#
have argued that fort2@t1 the autocorrelation obeys th
power law
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A~t1 ,t2!;@R~t1!/R~t2!#l ~5.15!

for late times.„Note that, sinceR}tn, the variables used in
this paper give ln@R(t1)/R(t2)#522ntanh21dt/2 t̄ .… Fisher
and Huse give physical arguments ford/2<l<d. They
point out thatl51 for thed51 Glauber model and conjec
ture that l55/4 for the two-dimensional spin-flip Ising
model. In the limitt2@t1 , the Yeung-Jasnow theory give
l5d/2, as is easily seen by settingr 50 in Eq. ~5.2!. The
Liu-Mazenko theory yieldsl'1.2887 and 1.6726 for two
and three dimensions, respectively@26#. Cell-dynamical
simulations performed by Liu and Mazenko@26# gave l
51.24660.02 for d52. A recent experiment@30# found l
51.24660.079 for a two-dimensional nematic liquid cryst
using video techniques. For our simulations we measu
A(t1 ,t2) for several values oft1 . The results are presente
on a log-log scale versust2 /t1 in Fig. 10.@In this measure-
ment we did not employ the nonlinear transformati
c→sgn(c). This accounts for the fact thatA(t1 ,t1),1, but
does not otherwise seem to affect the results.# In the figure,
the data appear to support a power-law decay at the la
time, and the exponent found by fitting the 48 pointst2
.1800 for t1520 is l'1.24, which is in good agreemen
with the experiment and the simulations by Liu and M
zenko. However, the local effective value ofl, leff
52dlnA/dln(t1 /t2), which is shown vst2 /t1 in the inset in
Fig. 10, does not show a clear convergence to an asymp
limit, especially for larger values oft1. Hereleff is obtained
as a three-point finite-difference estimate aroundt2, but es-
timates that smooth the data over wider intervals yield si
larly irregular results. The estimates ofl obtained from our
present simulations are thus somewhat uncertain. Howe
the Yeung-Jasnow prediction,l51, is clearly violated.

The predictions of the two theories for the two-time stru
ture factor are compared to our simulation data in Fig. 6. T

FIG. 9. The two-time correlation functionC(r ,t1 ,t2) with t1

5100 andt25200 presented on a semi-log scale. The characte
tic lengthR(t2) is determined analytically as described in the te
The agreement between the simulation~circles! and the Yeung-
Jasnow theory~solid line! is quite good for this choice of param
eters; the Liu-Mazenko theory~dashed line! is noticeably different.
The agreement between simulations and Yeung-Jasnow is n
good for larger time separations.
d

st
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Liu-Mazenko theory is in semiquantitative agreement w
our simulations at smallk, but falls off much more rapidly at
largek. In addition the shoulder present both in our simu
tion result and in the Yeung-Jasnow theory is absent in
Liu-Mazenko result. The Yeung-Jasnow theory agrees m
better with our simulation, although it does not fall off as fa
at largek, and its overestimation around the shoulder is se
consistently throughout our simulations.

The prediction for the characteristic scaled time sepa
tion dtc , defined in Sec. III, for both theories is compared
our simulation results in Fig. 5. All three agree thatdtc

5D̃d t̄ for small t̄ . Least-squares fits giveD̃251.3660.02
for our simulation, D̃251.32560.002 and D̃351.633
60.006 for Yeung-Jasnow, andD̃251.0060.02 for Liu-
Mazenko. At large t̄ , the dtc5Dd t̄ 1/2 behavior of the
Yeung-Jasnow approach results naturally from Eq.~5.8!.
This equation can be solved numerically to findD2'2.156
and D3'2.187 in two and three dimensions, respective
Our simulation results giveD252.1260.01. The value oft̄
separating the two scaling behaviors corresponds quan
tively to the value for which the first term no longer dom
nates the series expansion of the Yeung-Jasnow result, g
by the relation~5.5b!. The agreement between the Yeun
Jasnow theory and our simulation is quite remarkable.
the other hand, fort̄ not small the Liu-Mazenko theory
crosses over to a region wheredtc is independent oft̄ and
then into another linear region; neither of these relationsh
is seen in our simulations.

The analytic expression for the universal form of the tw
time structure factor deduced from the Yeung-Jasnow the
for large t̄ is given in Eq.~5.8!. It is tested for several value

s-
.

as

FIG. 10. The autocorrelation functionA(t1 ,t2). A least-squares
fit for t2.1800 for thet1520 data gives the exponentl'1.24.
Fits for latert1 give progressively smaller values, but are still larg
than 1. The latest time value is approached from below, and
asymptotic value may not be obtained for the simulation times c
sidered here. For two dimensions, the Liu-Mazenko value ofl is
found numerically to be approximately 1.2887, while a recent
periment gives 1.24660.079. The Yeung-Jasnow prediction
unity. The local effective exponentleff estimated from a three-poin
finite difference appear in the inset. They characterize the un
tainty in our estimate ofl, but show that the Yeung-Jasnow pr
diction is violated.
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56 6611SPECKLE FROM PHASE-ORDERING SYSTEMS
of t̄ in Fig. 11, which shows good collapse of the simulati
data for t̄ Cov(dt, t̄ ) in terms of the scaling variablez
5dt/ t̄ 1/2. The data also agree quite well with the Yeun
Jasnow scaling function,t̄ F2,YJ

2 for z,5. Indeed, the slow
quadratic decay of correlations nearz50 is another signa-
ture of persistence in the phase-ordering system. In cont
Brownian fluctuations give exponential decay fromdt50.
The agreement with the Yeung-Jasnow theory is remark
since the scaling of the simulation data uses an analytic
pression for the characteristic length, and no adjustable
rameters are employed.

VI. CONCLUSIONS

Using both numerical and analytic methods, we have
vestigated time-time correlations in the scattering inten
for a two-dimensional system undergoing an order-disor
transition. The correlations are found to obey scaling
terms of the variablesdt5ut22t1u and t̄ 5(t11t2)/2. In the
large-t̄ limit, the correlation data collapse onto a univers

curve which is a function only ofdt/A t̄ .
We argue for, and establish numerically, an exponen

distribution for the scattering intensity, Eq.~4.10!, and equal-
ity between the scattering intensity covariance and the sq
of the two-time structure factor of the order parameter,
~4.6!, for kÞ0. We use this equality to test theories for th

FIG. 11. Plot of the intensity-covariance scaling functi

t̄ Cov(dt, t̄ ) versusz5dt/A t̄ for different values oft̄ . The data

collapse onto a single curve for a large range oft̄ . The solid curve

is the corresponding analytic scaling function,t̄ F2,YJ
2 (dt, t̄ ), pre-

dicted from the Yeung-Jasnow result in Eq.~5.8!. It agrees quite
well with the simulation data.
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two-time structure factor due to Yeung and Jasnow, and
and Mazenko. Both theories describe the data well in so
instances, and poorly in other cases. The Yeung-Jas
theory is very similar to our simulation results, so long asdt
is not too large. Fort2@t1, the Liu-Mazenko theory gives a
better estimate for the autocorrelation exponentl. For large
t̄ , however, the Liu-Mazenko theory does not show t
same scaling as our simulation results, where the Yeu
Jasnow theory compares quantitatively well.

Our numerical simulations indicate that a definitive e
perimental treatment of time correlations during an ord
disorder transition is possible by intensity-correlation sp
trometry of scattering speckle. Analysis of experimen
correlation data should be similar to the procedures d
cussed for the simulation data in Sec. III. For nonconser
systems, the experimental scaling function should be w
approximated by Eq.~5.5a!, for smallk, with one adjustable
parameter for each axis. With a similar adjustable param
scheme, the scaling function should be described by
~5.8! for data in the Porod tail.

Finally, we expect that the equality between the intens
covariance and the squared two-time structure factor a
occurs in other phase-ordering systems; in particular, we
pect that it occurs for conserved systems. That would al
the experimental study of, for example, time correlations
binary alloys undergoing phase separation by spinodal
composition, which are representative of model B. Inde
preliminary numerical work we have done indicates this. E
periments on such systems would be of considerable va

ACKNOWLEDGMENTS

We would like to acknowledge useful discussions with
Kawasaki, Y. Oono, M. M. Sano, H. Tomita, and particular
B. Morin and K. R. Elder. P. A. R. is grateful for hospitalit
and support at McGill and Kyoto Universities. Research
McGill University was supported by the Natural Scienc
and Engineering Research Council of Canada andle Fonds
pour la Formation de Chercheurs et l’Aide a` la Recherche
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